

RTP Modulator/Switch

Product Description

RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is an electro-optical crystal with unique stable properties that are best suited for shortwave and high optical power applications in which other electro-optical crystals become unstable. Due to its small piezo effects, RTP is also well suited for high repetition rates and short pulse lengths. Our device contains a matching RTP pairs that advantageously compensates temperature induced birefringent drifts. We offer a wide range of aperture and driving voltage choice.

Performance Specifications

RTP Modulator/Switch	Spec		
Transparency Range	350~4500nm		
Dielectric Constant	Eeff = 13.0		
Thermo-optical coefficients	d∂/dT = -0.029 nm / °C		
Clear Aperture	> 90%		
Coatings	AR@1064nm(R<0.2%)		
Nonlinear Coefficients	d15/d31=2.0pm/V; d24/d32=3.6pm/V; d33=8.3pm/V		
Electro-optic constants	Y-cut: r51=38.5 pm/V X-cut: r33=35 pm/V,r23=12.5 pm/V, r13=10.6 pm/V		
Thermal Expansion Coefficients	αx=1.01x10-5, αy =1.37x10-5, αz =-4.17x10-6		
Static Half Wave Voltage (1064nm)	4x4x20 mm: 1,600 V 6x6x20 mm: 2,400 V		
Electrical Resistivity	1011-1012 ohm·cm		
Extinction Ratio	> 20dB		
Optical Damage Threshold	> 600MW/ cm² 10ns 10Hz at 1064nm		
Wave front distortion	λ/6@633nm		
Flatness	N/10@633nm		
Angle Tolerance	+/-0.15°		
Perpendicularity	≤10′		
Scratch/Dig	20/10		
Parallelism	<u></u>		
Chamfer	≤0.2mmx45°		

*Sellmeier equations of KD*P:(λ in um):

 $\begin{array}{l} nx2=2.15559 + 0.93307 [1-(0.20994/\lambda)2] & - 0.01452\lambda2 \\ ny2=2.38494 + 0.73603 [1-(0.23891/\lambda)2] & - 0.01583 \ \lambda2 \\ nz2=2.27723 + 1.11030 [1-(0.23454/\lambda)2] & - 0.01995\lambda2 \end{array}$

Features

- Large nonlinear coef.
- High repetition rate
- Low half-wage voltage
- No piezoelectric ringing
- High damage threshold
- High extinction ratio
- Non-hygroscopic

Applications

- Q-Switch
- Laser Power Modulation
- Laser Phase Modulation
- Pulse Picker

Revised on 12/13/22 (Click here for latest revision)

Ordering Information

	1		1			1
Prefix	Туре	Wavelength		Aperture	Length	
RTPM-		350-430 nm = 0390 430-700 nm = 0550 700-1000 nm = 0850 1064 nm = 1064		2mm = 2 3mm = 3 4mm = 4 5mm = 5 6mm = 6 7mm = 7 8mm = 8	12mm = 1 14mm = 2 18mm = 3 20mm = 4 22mm = 5 25mm = 6	

The crystal length relates to driving voltage. An example for 1060nm operation is listed below.

 $\label{eq:product} \ensuremath{^*\!Product}\xspace$ dimensions may change without notice. This is sometimes required for non-standard specifications.